Efficient computation of the exponential operator for large, sparse, symmetric matrices

نویسندگان

  • Luca Bergamaschi
  • Marco Vianello
چکیده

In this paper we compare Krylov subspace methods with Chebyshev series expansion for approximating the matrix exponential operator on large, sparse, symmetric matrices. Experimental results upon negative-definite matrices with very large size, arising from (2D and 3D) FE and FD spatial discretization of linear parabolic PDEs, demonstrate that the Chebyshev method can be an effective alternative to Krylov techniques, especially when memory bounds do not allow the storage of all Ritz vectors. We discuss also sensitivity of Chebyshev convergence to extreme eigenvalue approximation, as well as reliability of various a priori and a posteriori error estimates for both methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION

The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...

متن کامل

Data-Sparse Approximation to Operator-Valued Functions of Elliptic Operator

In previous papers the arithmetic of hierarchical matrices has been described, which allows to compute the inverse, for instance, of finite element stiffness matrices discretising an elliptic operator L. The required computing time is up to logarithmic factors linear in the dimension of the matrix. In particular, this technique can be used for the computation of the discrete analogue of a resol...

متن کامل

The design and use of a sparse direct solver for skew symmetric matrices

We consider the direct solution of sparse skew symmetric matrices. We see that the pivoting strategies are similar, but simpler, to those used in the factorization of sparse symmetric indefinite matrices, and we briefly describe the algorithms used in a forthcoming direct code based on multifrontal techniques for the factorization of real skew symmetric matrices. We show how this factorization ...

متن کامل

A parallel Block Lanczos algorithm and its implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers

In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements a Block Lanczos algorithm efficient and portable for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000